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Intramolecular homolytic aromatic substitution of alkyl
2-benzimidazolyl sulfones as a means of entry into alkyl

radicals for organic synthesis
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Abstract

The intramolecular radical aromatic substitution of heteroaryl sulfones by tethered aryl radicals has been investigated as a source of
alkyl radicals. The 1-(2-iodobenzyl)benzimidazole-2-sulfonyl system was found to be the most effective, while a tetrazole-based system
did not undergo the desired radical aromatic substitution at all. Application of the benzimidazole-based system to the generation of alkyl
radical and their subsequent use in radical cyclizations was demonstrated.
� 2008 Elsevier Ltd. All rights reserved.
Ongoing projects in our laboratory required the use of
alkyl radical precursors beyond the halides, chalcogenides,
and thiocarbonyl derivatives traditionally employed.1,2

Nitroalkanes met many of our requirements1–3 but still suf-
fered from several limitations, most notably the high acid-
ity of the a-hydrogen. Looking for another group with
powerful electron-withdrawing properties but lower acidity
of the a-hydrogens, we focused our attention on the sulf-
ones. As this group is somewhat inert to direct displace-
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Scheme 1. General strategy for the generat
ment by tributyltin hydride and its surrogates, and does
not take part in intramolecular homolytic substitution
reactions at sulfur1 we focused our attention on alkyl rad-
ical generation by intramolecular ipso-type substitution of
alkyl aryl sulfones.

The susceptibility of aryl sulfones toward ipso intra-
molecular homolytic substitution is well known.2 This reac-
tion typically involves attack of a C-centered radical upon
the ipso position of an aryl-sulfone, the cyclic radical
cal Research, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
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intermediate then fragments resulting in the formation of a
sulfonyl radical. The earliest example of this reaction
involved the attack of an alkyl radical on an aryl sulfon-
amide resulting in the transfer of the aryl group to the
alkane.2 Subsequently, this reaction has been widely
employed in the synthesis of novel fused hetero-cycles
and biaryls, with the focus on products derived from the
aryl moiety of the initial alkyl aryl sulfone.3–6 We envisaged
an alternative application of this chemistry with the
emphasis on the alkylsulfonyl radical expelled in the ipso-
substitution process as a precursor, via extrusion of sulfur
dioxide,7 as an alkyl radical progenitor.

The general strategy foreseen here (Scheme 1) involves
the synthesis of a system in which an aryl iodide trigger
is tethered to an aromatic thiol; this thiol 1 can then be
alkylated and subsequently oxidized to a sulfone 2. While
generally stable to typical synthetic manipulations this
sulfone 2 undergoes ipso-substitution upon generation of
the aryl radical 3 resulting in ejection of the alkyl sulfonyl
radical 6, which rapidly extrudes sulfur dioxide to leave the
desired alkyl radical 7.

A series of sulfones were synthesized based on aromatic
thiols containing a second heteroatom for installation of
the 2-iodobenzyl ‘trigger’. The 2-methylnaphthalenyl radi-
cal was chosen as a model radical leaving group because
of the characteristic chemical shift of methyl singlet at d
2.48 in the product, which makes identification of a suc-
cessful reaction by NMR possible. Compounds 9, 11, and
13 (Table 1) were constructed by sequential alkylations of
the base compound followed by oxidation.8 A tetrazole-
based system 19 was constructed (Scheme 2) from the iso-
thiocyanate 16 by way of a [3+2] cycloaddition in aqueous
solution.9–11

Radical reactions were performed by syringe pump con-
trolled addition of an AIBN/tributyltin hydride solution to
Table 1
Synthesis of arylsulfones for screening

Base Yield 3-step synthesis9 Compound
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a refluxing solution of the various alkyl aryl sulfones in
order to minimize the concentration of stannane in an
effort to reduce premature trapping of the aryl radical
(Table 2). Not surprisingly, inspection of the reaction mix-
ture of the 2-mercaptophenol-based system 9 by 1H NMR
spectroscopy did not show evidence of successful homolytic
aromatic substitution, as indicated by the absence of 2-
methylnaphthalene. Rather, a complex mixture of dehalo-
genated starting material and biaryl compounds, presum-
ably the result of addition of the aryl radical to solvent
and possibly the 3-position of the alkoxy benzene ring,
was produced. Subjecting 11 to the same conditions
resulted in simple dehalogenation of the majority of the
starting material. However, the formation of 2-methyl-
naphthalene in 10–20% yield gave some grounds for opti-
mism. The benzimidazole system 13 was the most
successful precursor producing moderate amounts of
product in the screening reaction.



Table 3
Generation and cyclization of alkyl radical 34 from sulfone 28

Propagating reagent Solvent Addition time (h) Yield of 36 (%)

Bu3SnH Toluene 3 36
Bu3SnH Toluene 5 44
Bu3SnH Benzene 8 35
TTMSH Benzene Immediate 30

TTMSH Benzene 5 A

Starting material 28 was recovered unchanged from this reaction.
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Two aspects of the tetrazole-based system 19 make it
quite interesting in the context of aromatic homolytic sub-
stitution. First, this system is the most electron deficient of
the systems studied making it highly susceptible to nucleo-
philic aromatic substitution, as exemplified by its wide-
spread application in the Kocienski modification of the
Julia benzothiazole-based olefination.12 Secondly, the use
of the tetrazole ring eliminates the possibility of the initial
aryl radical being trapped via an intramolecular 1,5-hydro-
gen transfer13–15 a process, which could play a role in the
poor conversion of imidazole-based system 11. Unfortu-
nately, the propensity of this system toward nucleophilic
aromatic substitution does not extend to radical aromatic
substitution, and the only reaction observed with 19 was
its clean conversion to the dehalogenated starting material
22; there was no evidence for the formation of 2-methyl-
naphthalene in this reaction.

Having established the supremacy of the benzimidazole
nucleus in the desired radical aromatic substitution a 1(2-
iodobenzyl)benzimidazole-2-thiol, which can be easily
incorporated into substrates as an alkyl radical precursor,
was synthesized. Thus, commercially available 2-chloro-
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Scheme 4. Generation of alkyl
benzimidazole 23 was treated with base and alkylated with
2-iodobenzyl bromide 14. The resulting chlorobenzimida-
zole 24 was converted to thione 25 by nucleophilic displace-
ment of chloride 24 with KSAc.16 This synthesis of 25 was
practical and scalable for the efficient preparation of larger
quantities. For the purpose of this investigation, the chal-
lenge of the generation of a primary alkyl radical was cho-
sen. Introduction of 2517 into an alkyl compound from the
alkyl halide was completed in an efficient 2-step sequence
(Scheme 3).

Syringe pump controlled treatment of the alkyl arylsulf-
one 2818 in refluxing toluene with a solution of AIBN and
tributyltin hydride over 5 h (Scheme 4); resulted in success-
ful generation of the cyclized product 3619 in 44% yield
along with 28% of the dehalogenated starting material
30. Attempts to further suppress premature trapping of
the aryl radical by varying the addition time proved unsuc-
cessful (Table 3). Use of tris(trimethylsilyl) silane as a prop-
agating agent resulted in either complete dehalogenation of
the aryl iodide or failure of the reaction to propagate.

A second example involves a sulfonamide 37.20 Again,
the precursor 25 was incorporated smoothly into the alkyl
system, resulting in a yield of 92% over two steps (Scheme
5). The methyl-pyrrolidine 3921 product of the 5-exo-cycli-
zation of the alkyl radical was recovered in moderate yield
on treatment of 38 with tributyltin hydride.

In conclusion, a system has been designed which can be
effectively used as a precursor for alkyl radicals from sulf-
ones. The 2-thiobenzimidazole 25 can be incorporated into
an alkyl system in a facile 2-step sequence. The resulting
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sulfone can then be used to generate the corresponding
alkyl radical under typical AIBN/tributyltin hydride medi-
ated conditions.
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